11 research outputs found

    Simulation des grands espaces et des temps longs

    Get PDF
    Fluid-Structure Interaction (FSI) describes a wide variety of industrial problems arising in mechanical engineering, civil engineering and biomechanics. In spite of the available computer performance and the actual maturity of computational fluid dynamics and computational structural dynamics, several key issues still prevent accurate FSI simulations.Two main approaches for the simulation of FSI problems are still gaining attention lately: partitioned and monolithic approaches. Results in the literature show that the partitioned approach is accurate and efficient but some instabilities may occur depending on the ratio of the densities and the complexity of the geometry. Monolithic methods are still of interest due to their capability to treat the interaction of the fluid and the structure using a unified formulation. In fact it makes the build up of a FSI problem easier as the mesh do not have to fit the geometry of the solids and the transfers are treated naturally.The software Thost has been created based on these analyzes. Thost is a 3D aerothermal numerical software. It has been developped for the numerical simulation of industrial processes like the heating in industrial furnaces as well as quenching. Its target is to model numericaly the thermal history of the industrial pieces in their environment without using any transfer coefficient. However the computational costs are still high and therefore the software is not fully efficient from an industrial point of view to simulate, analize and improve complex processes. All the work in this PhD thesis has been done to reduce the computational costs and optimize the accuracy of the simulations in Thost based on innovatives numerical methods such as dynamic anisotropic mesh adaptation, stabilized finite elements methods and immersing the objects directly from their Computer Aided Design files.L'interaction fluide structure est présente dans beaucoup de problèmes industriels, dans les domaines d'ingénierie mécanique, civile ou biomécanique. Même si les performances informatiques s'améliorent considérablement et que les méthodes en mécanique numérique gagnent en maturité, certaines difficultés ne permettent pas encore de réaliser des simulations numériques précises. Actuellement deux méthodes numériques gagnent en popularité pour la simulation numérique d'interactions fluide structure: la méthode de partitionnement et la méthode monolithique. Des résultats de la littérature montrent que la première est efficace et précise mais qu'elle peut rencontrer des problèmes d'instabilité si les ratios de densité sont élevés ou que les géométries sont complexes. Les méthodes d'immersion sont de plus en plus utilisées par la communauté scientifique. Différentes approches ont été développées, dont la Méthode d'Immersion de Volume. Cette méthode permet de faciliter la mise en place des calculs. Ainsi il n'est pas nécessaire de construire des maillages concordant avec la géométrie des objets, et le couplage entre les fluides et les solides se fait naturellement. C'est sur cette analyse qu'a été développé le logiciel Thost. Il permet de simuler des procédés industriels tels que le chauffage de pièces métalliques dans les fours industriels ou la trempe sans caractériser expérimentalement des coefficients de transfert. Le but d'un tel logiciel est de permettre une meilleure compréhension des procédés et ainsi de les optimiser. Cependant les coûts de calcul restant élevés, le but de la thèse est de les diminuer en s'appuyant sur des méthodes numériques innovantes tels que l'adaptation dynamique de maillage anisotrope, des méthodes éléments finis stabilisées ou l'immersion directe des objets à partir de la Conception Assistée par Ordinateur

    Immersing NURBS for CFD applications

    No full text
    International audienceWe present a new immersed method for solving conjugate heat transfer and fluid-solid interactions (FSI). It is based on the use of Non Uniform Rational B-Splines (NURBS) to compute the distance function ans thus representing the immersed solids inside the computational domain. Combined with anisotropic mesh adaptation and stabilized Finite Elements Method (FEM), it allows a novel, efficient and flexible approach to deal with turbulent flows and heat transfer inside large domains

    Méthode d'immersion de pièces mobiles dans des fours industriels

    No full text
    National audienceLe traitement thermique des pièces dans un four industriel reste un grand défi pour la simulation numérique. Hormis la prise en compte de la convection forcée, du rayonnement et de l'écoulement turbulent, il reste à traiter l'interaction entre gaz et solide d'une manière fiable. Nous proposons ici une méthode d'immersion de volume avec des objets mobiles, en utilisant une méthode d'adaptation de maillage anisotrope prédictif

    Fully space-time metric based anisotropic mesh adaptation for unsteady problems

    No full text
    International audienceThis paper presents a novel method for building unstructured meshes for time- dependent problems. We start by introducing the classical anisotropic mesh adaptation technique proposed in [1, 2]. The latter is developed based on the length distribution tensor approach and the associated a posteriori edge based error analysis. Then we extend the mesh adaptation technique to contain adaptive time advancing. A newly developed time error estimator is constructed and intends to homogenize the global error over space and time. The main purpose of this work is the development of a novel meshing algorithm, the paradoxical meshing, that provides optimal space and time meshes suitable for several simulation time subintervals. The advantage of the proposed method relies in its conceptual and computational simplicity as it only requires from the user a number of nodes and a frequency of adaptation according to which the mesh and the time-steps are automatically adapted. Numerical solutions on time-dependent problems demonstrate the accuracy and efficiency of the proposed space-time error estimator

    Laminage de tubes ODS

    Get PDF
    Ce travail porte sur la mise en uvre de procédé de fabrication de tubes pour des nuances ODS par laminage à pas de pèlerin. Une première partie traitera de la détermination des lois de comportement et des paramètres adaptés pour étudier les nuances ODS dans les sollicitations liées au laminage. Ensuite on montrera la modélisation éléments finis d'une machine de laboratoire de type HPTR avant d'étendre les méthodologies de simulation au dispositif industriel qui est un laminoir VMR

    Numerical modeling of large scales and long time

    No full text
    L'interaction fluide structure est présente dans beaucoup de problèmes industriels, dans les domaines d'ingénierie mécanique, civile ou biomécanique. Même si les performances informatiques s'améliorent considérablement et que les méthodes en mécanique numérique gagnent en maturité, certaines difficultés ne permettent pas encore de réaliser des simulations numériques précises. Actuellement deux méthodes numériques gagnent en popularité pour la simulation numérique d'interactions fluide structure: la méthode de partitionnement et la méthode monolithique. Des résultats de la littérature montrent que la première est efficace et précise mais qu'elle peut rencontrer des problèmes d'instabilité si les ratios de densité sont élevés ou que les géométries sont complexes. Les méthodes d'immersion sont de plus en plus utilisées par la communauté scientifique. Différentes approches ont été développées, dont la Méthode d'Immersion de Volume. Cette méthode permet de faciliter la mise en place des calculs. Ainsi il n'est pas nécessaire de construire des maillages concordant avec la géométrie des objets, et le couplage entre les fluides et les solides se fait naturellement. C'est sur cette analyse qu'a été développé le logiciel Thost. Il permet de simuler des procédés industriels tels que le chauffage de pièces métalliques dans les fours industriels ou la trempe sans caractériser expérimentalement des coefficients de transfert. Le but d'un tel logiciel est de permettre une meilleure compréhension des procédés et ainsi de les optimiser. Cependant les coûts de calcul restant élevés, le but de la thèse est de les diminuer en s'appuyant sur des méthodes numériques innovantes tels que l'adaptation dynamique de maillage anisotrope, des méthodes éléments finis stabilisées ou l'immersion directe des objets à partir de la Conception Assistée par Ordinateur.Fluid-Structure Interaction (FSI) describes a wide variety of industrial problems arising in mechanical engineering, civil engineering and biomechanics. In spite of the available computer performance and the actual maturity of computational fluid dynamics and computational structural dynamics, several key issues still prevent accurate FSI simulations.Two main approaches for the simulation of FSI problems are still gaining attention lately: partitioned and monolithic approaches. Results in the literature show that the partitioned approach is accurate and efficient but some instabilities may occur depending on the ratio of the densities and the complexity of the geometry. Monolithic methods are still of interest due to their capability to treat the interaction of the fluid and the structure using a unified formulation. In fact it makes the build up of a FSI problem easier as the mesh do not have to fit the geometry of the solids and the transfers are treated naturally.The software Thost has been created based on these analyzes. Thost is a 3D aerothermal numerical software. It has been developped for the numerical simulation of industrial processes like the heating in industrial furnaces as well as quenching. Its target is to model numericaly the thermal history of the industrial pieces in their environment without using any transfer coefficient. However the computational costs are still high and therefore the software is not fully efficient from an industrial point of view to simulate, analize and improve complex processes. All the work in this PhD thesis has been done to reduce the computational costs and optimize the accuracy of the simulations in Thost based on innovatives numerical methods such as dynamic anisotropic mesh adaptation, stabilized finite elements methods and immersing the objects directly from their Computer Aided Design files

    Edge-Based Anisotropic Mesh Adaptation for CFD Applications

    No full text
    International audienceThis paper presents an anisotropic mesh adaptation technique relying on the length distribution tensor approach and an edge based error estimator. It enables to calculate a stretching factor providing a new edge length distribution, its associated tensor and the corresponding metric. The optimal stretching factor field is obtained by solving an optimization problem under the constraint of a fixed number of nodes. It accounts for different component fields in a single metric. With such features, the method proves to be simple and efficient and can be easily applied to a large panel of challenging CFD applications

    Immersed NURBS for CFD Applications

    No full text
    International audienceWe present a new immersed method for Computational Fluid Dynamics applications. It is based on the use of Non Uniform Rational B-Splines (NURBS). The distance function to an immersed solid is computed directly from its Computer Aided Design (CAD) description. This allows to bypass the generation of surface meshes and to obtain accurate levelset functions for complex geometries. Combined with a metric based anisotropic mesh adaptation and stabilized Finite Elements Method (FEM), it allows a novel, efficient and flexible approach to deal with a wide range of fluid structure interaction problems. The metric field is computed directly at the node of the mesh using the length distribution tensor and an edge based error analysis. Several 2D and 3D numerical examples will demonstrate the applicability of the proposed method

    On the stabilized finite element method for steady convection-dominated problems with anisotropic mesh adaptation

    No full text
    International audienceIn this work, we combine the use of the Streamline Upwind Petrov-Galerkin (SUPG) method with anisotropic mesh adaptation to obtain accurate solutions for steady convection-dominated problems. The anisotropic mesh adaptation framework is introduced in the context of a local mesh generation method based on a mesh topology modification and a minimal volume principle. A new route to get a metric field directly at the node of the mesh is highlighted using the length distribution tensor and an edge based error analysis. An a posteriori error estimation is applied to the stabilized finite element solution detecting automatically all sharp gradients, inner and boundary layers. The numerical examples show that the use of the anisotropic mesh adaptation algorithm allows the recovery of the global convergence order of the numerical schemes while producing accurate and oscillation free numerical solutions
    corecore